Author Topic: Thorium Suppressed By Nuclear Powers In United States  (Read 3468 times)

0 Members and 1 Guest are viewing this topic.

Offline detgen154

  • Member
  • *
  • Posts: 35
Thorium Suppressed By Nuclear Powers In United States
« on: July 27, 2015, 01:56:00 pm »
Chicot, Arkansas — Sources in the truth-seeking community believe the nation’s future is looking more contaminated, with nuclear engineering business powers in the United States suppressing thorium. Thorium is radioactive chemical with greater safety benefits, absence of non-fertile isotopes and its higher occurrence and availability, nearly five times as more abundant than uranium. Major countries, including the United States, experimented with using thorium as nuclear engineering fuel substitute. However, a wide-spread use thorium in America remains unsuccessful. Sources in conspiracy theory circles believe, like fluoride, business-related interests deliberately stop government from exploiting other options. “Fascism is known as the merger of corporate and state powers. This is fascism at its core. We’re discarding all other options in favor of the nuclear option. And at the cost of halting cleaner energy and a safer America.”

Offline jerryweaver

  • Member
  • *****
  • Posts: 5,430
Re: Thorium Suppressed By Nuclear Powers In United States
« Reply #1 on: July 27, 2015, 02:24:44 pm »
This isn't a conspiracy theory.  It is the solution to the Nuclear blackmail of the Anglo - American establishment. Israel is the Proxy in the ME.

Santa Susanna melted in 1959 near LA and sodium fluoride cooled nuke was nixed for the US at that time.

Santa Susana toxic cleanup effort is a mess

Other countries are going forward though.

Who is researching Thorium energy?

Interest: nuclear regulation relating to thorium reactors

According to World Nuclear Association the following are the latest information about research in the use of Thorium as fuel. Research into the use of thorium as a nuclear fuel has been taking place for over 40 years, though with much less intensity than that for uranium or uranium-plutonium fuels. Basic development work has been conducted in Germany, India, Canada, Japan, China, Netherlands, Belgium, Norway, Russia, Brazil, the UK & the USA. Test irradiations have been conducted on a number of different thorium-based fuel forms. Noteworthy studies and experiments involving thorium fuel include:
Heavy Water Reactors: Thorium-based fuels for the ‘Candu’ PHWR system have been designed and tested in Canada at AECL's Chalk River Laboratories for more than 50 years. The NRX, NRU and WR-1 reactors were used, NRU most recently. R&D into thorium fuel use in CANDU reactors continues to be pursued by Canadian and Chinese groups as part of joint studies looking at a wide range of fuel cycle options involving China's Qinshan Phase III PHWR units.
In July 2009 a second phase agreement was signed among AECL, the Third Qinshan Nuclear Power Company (TQNPC), China North Nuclear Fuel Corporation and the Nuclear Power Institute of China to jointly develop and demonstrate the use of thorium fuel and to study the commercial and technical feasibility of its full-scale use in Candu units such as at Qinshan. An expert panel appointed by CNNC unanimously recommended that China consider building two new Candu units to take advantage of the design's unique capabilities in utilizing alternative fuels. It confirmed that thorium use in the Enhanced Candu 6 reactor design is “technically practical and feasible”, and cited the design’s “enhanced safety and good economics” as reasons it could be deployed in China in the near term.
India’s nuclear developers have designed an Advanced Heavy Water Reactor (AHWR) specifically as a means for ‘burning’ thorium – this will be the final phase of their three-phase nuclear energy infrastructure plan (see below). The reactor will operate with a power of 300 MWe using thorium-plutonium or thorium-U-233 seed fuel in mixed oxide form. It is heavy water moderated (& light water cooled) and will eventually be capable of self-sustaining U-233 production. About 75% of the power will come from the thorium. Construction of the pilot AHWR is envisaged in the 12th plan period to 2017, for operation about 2022.
For export, India has also designed an AHWR300-LEU which uses low-enriched uranium as well thorium in fuel, dispensing with plutonium input. About 39% of the power will come from thorium. While closed fuel cycle is possible, this is not required or envisaged, and the used fuel, with about 8% fissile isotopes can be used in light water reactors.
High-Temperature Gas-Cooled Reactors: Thorium fuel was used in HTRs prior to the successful demonstration reactors described above. The UK operated the 20 MWth Dragon HTR from 1964 to 1973 for 741 full power days. Dragon was run as an OECD/Euratom cooperation project, involving Austria, Denmark, Sweden, Norway and Switzerland in addition to the UK. Germany operated the Atom Versuchs Reaktor (AVR) at Jülich for over 750 weeks between 1967 and 1988. This was a small pebble bed reactor that operated at 15 MWe, mainly with thorium-HEU fuel.

Pebble bed reactor development builds on German work with the AVR and THTR and is under development in China (HTR-10, and HTR-PM).
Light Water Reactors: The feasibility of using thorium fuels in a PWR was studied in considerable detail during a collaborative project between Germany and Brazil in the 1980s. The vision was to design fuel strategies that used materials effectively – recycling of plutonium and U-233 was seen to be logical. The study showed that appreciable conversion to U-233 could be obtained with various thorium fuels, and that useful uranium savings could be achieved. The program terminated in 1988 for non-technical reasons. It did not reach its later stages which would have involved trial irradiations of thorium-plutonium fuels in the Angra-1 PWR in Brazil, although preliminary Th-fuel irradiation experiments were performed in Germany. Most findings from this study remain relevant today.
Thorium-plutonium oxide (Th-MOX) fuels for LWRs are being developed by Norwegian proponents with a view that these are the most readily achievable option for tapping energy from thorium. This is because such fuel is usable in existing reactors (with minimal modification) using existing uranium-MOX technology and licensing experience.
A thorium-MOX fuel irradiation experiment is underway in the Halden research reactor in Norway from 2013. The test fuel is in the form of pellets composed of a dense thorium oxide ceramic matrix containing about 10% of plutonium oxide as the 'fissile driver'. Th-MOX fuel promises higher safety margins than U-MOX due to higher thermal conductivity and melting point, and it produces U-233 as it operates rather than further plutonium (therefore providing a new option for reducing civil and military plutonium stocks). The irradiation test will run for around five years, after which the fuel will be studied to quantify its operational performance and gather data to support the safety case for its eventual use in commercial reactors.
Various groups are evaluating the option of using thorium fuels in in an advanced reduced-moderation BWR (RBWR). This reactor platform, designed by Hitachi Ltd and JAEA, should be well suited for achieving high U-233 conversion factors from thorium due to its epithermal neutron spectrum. High levels of actinide destruction may also be achieved in carefully designed thorium fuels in these conditions. The RBWR is based on the ABWR architecture but has a shorter, flatter pancake-shaped core and a tight hexagonal fuel lattice to ensure sufficient fast neutron leakage and a negative void reactivity coefficient.
The so-called Radkowsky Thorium Reactor design is based on a heterogeneous ‘seed & blanket’ thorium fuel concept, tailored for Russian-type LWRs (VVERs)6. Enriched uranium (20% U-235) or plutonium is used in a seed region at the centre of a fuel assembly, with this fuel being in a unique metallic form. The central seed portion is demountable from the blanket material which remains in the reactor for nine years, but the centre seed portion is burned for only three years (as in a normal VVER). Design of the seed fuel rods in the centre portion draws on experience of Russian naval reactors.
The European Framework Program has supported a number of relevant research activities into thorium fuel use in LWRs. Three distinct trial irradiations have been performed on thorium-plutonium fuels, including a test pin loaded in the Obrigheim PWR over 2002-06 during which it achieved about 38 GWd/t burnup.
A small amount of thorium-plutonium fuel was irradiated in the 60 MWe Lingen BWR in Germany in the early 1970s. The fuel contained 2.6 % of high fissile-grade plutonium (86% Pu-239) and the fuel achieved about 20 GWd/t burnup. The experiment was not representative of commercial fuel, however the experiment allowed for fundamental data collection and benchmarking of codes for this fuel material.
Molten Salt Reactors: In the 1960s the Oak Ridge National Laboratory (USA) designed and built a demonstration MSR using U-233 as the main fissile driver in its second campaign. The reactor ran over 1965-69 at powers up to 7.4 MWt. The R&D program demonstrated the feasibility of this system and highlighted some unique corrosion and safety issues that would need to be addressed if constructing a larger pilot MSR.
There is significant renewed interest in developing thorium-fuelled MSRs. Projects are (or have recently been) underway in China, Japan, Russia, France and the USA. It is notable that the MSR is one of the six ‘Generation IV’ reactor designs selected as worthy of further development (see information page on Generation IV Nuclear Reactors).
The thorium-fuelled MSR variant is sometimes referred to as the Liquid Fluoride Thorium Reactor (LFTR), utilizing U-233 which has been bred in a liquid thorium salt blanket.
Safety is achieved with a freeze plug which if power is cut allows the fuel to drain into subcritical geometry in a catch basin. There is also a negative temperature coefficient of reactivity due to expansion of the fuel.
The China Academy of Sciences in January 2011 launched an R&D program on LFTR, known there as the thorium-breeding molten-salt reactor (Th-MSR or TMSR), and claimed to have the world's largest national effort on it, hoping to obtain full intellectual property rights on the technology. The TMSR Research Centre has a 5 MWe MSR prototype under construction at Shanghai Institute of Applied Physics (SINAP, under the Academy) with 2015 target for operation.
The TMSR-SF stream has only partial utilization of thorium, relying on some breeding as with U-238, and needing fissile uranium input as well. SINAP aims at a 2 MW pilot plant by about 2015, and a 100 MWt demonstration pebble bed plant with open fuel cycle by about 2025. TRISO particles will be with both low-enriched uranium and thorium, separately.
Accelerator-Driven Reactors: A number of groups have investigated how a thorium-fuelled accelerator-driven reactor (ADS) may work and appear. Perhaps most notable is the ‘ADTR’ design patented by a UK group. This reactor operates very close to criticality and therefore requires a relatively small proton beam to drive the spallation neutron source. Earlier proposals for ADS reactors required high-energy and high-current proton beams which are energy-intensive to produce, and for which operational reliability is a problem.
Research Reactor ‘Kamini’: India has been operating a low-power U-233 fuelled reactor at Kalpakkam since 1996 – this is a 30 kWth experimental facility using U-233 in aluminium plates (a typical fuel-form for research reactors). Kamini is water cooled with a beryllia neutron reflector. The total mass of U-233 in the core is around 600 grams. It is noteworthy for being the only U-233 fuelled reactor in the world, though it does not in itself directly support thorium fuel R&D. The reactor is adjacent to the 40 MWt Fast Breeder Test Reactor in which ThO2 is irradiated, producing the U-233 for Kamini.
Aqueous homogeneous reactor: An aqueous homogenous suspension reactor operated over 1974-77 in the Netherlands at 1 MWth using thorium plus HEU oxide pellets. The thorium-HEU fuel was circulated in solution with continuous reprocessing outside the core to remove fission products, resulting in a high conversion rate to U-233.
 Jun 2, 2014
 Saif Uddin
Saif Uddin · Kuwait Institute for Scientific Research
Dear Jorge, I wish to express my gratitude for writing such a comprehensive and appropriate review. I will be very happy to get any review article on this aspect if you have recently published. Although thsi information is very complete in itself. Thanks a lot.
 Jun 3, 2014
 Jorge Morales Pedraza
Jorge Morales Pedraza · Independent Consultant
Dear Saif. Many thanks for your comments. You can find an article on new nuclear technology entitled New Technologies Associated with the Construction of Nuclear Power Plants; Chapter of the book “New Development in Nuclear Energy Research”; Nova Science Publishers Inc.; 2013. This information will complement my comments on the use of Thorium in nuclear power reactors.